
www.manaraa.com

Software Development Fundamentals (SDF) 1

Fluency in the process of software development is a prerequisite to the study of most of 2

computer science. In order to effectively use computers to solve problems, students must be 3

competent at reading and writing programs in multiple programming languages. Beyond 4

programming skills, however, they must be able to design and analyze algorithms, select 5

appropriate paradigms, and utilize modern development and testing tools. This knowledge area 6

brings together those fundamental concepts and skills related to the software development 7

process. As such, it provides a foundation for other software-oriented knowledge areas, most 8

notably Programming Languages, Algorithms and Complexity, and Software Engineering. 9

It is important to note that this knowledge area is distinct from the old Programming 10

Fundamentals knowledge area from CC2001. Whereas that knowledge area focused exclusively 11

on the programming skills required in an introductory computer science course, this new 12

knowledge area is intended to fill a much broader purpose. It focuses on the entire software 13

development process, identifying those concepts and skills that should be mastered in the first 14

year of a computer science program. This includes the design and simple analysis of algorithms, 15

fundamental programming concepts and data structures, and basic software development 16

methods and tools. As a result of its broader purpose, the Software Development Fundamentals 17

knowledge area includes fundamental concepts and skills that could naturally be listed in other 18

software-oriented knowledge areas (e.g., programming constructs from Programming 19

Languages, simple algorithm analysis from Algorithms & Complexity, simple development 20

methodologies from Software Engineering). Likewise, each of these knowledge areas will 21

contain more advanced material that builds upon the fundamental concepts and skills listed here. 22

While broader in scope than the old Programming Fundamentals, this knowledge area still allows 23

for considerable flexibility in the design of first-year curricula. For example, the Fundamental 24

Programming Concepts unit identifies only those concepts that are common to all programming 25

paradigms. It is expected that an instructor would select one or more programming paradigms 26

(e.g., object-oriented programming, functional programming, scripting) to illustrate these 27

programming concepts, and would pull paradigm-specific content from the Programming 28

Languages knowledge area to fill out a course. Likewise, an instructor could choose to 29

www.manaraa.com

emphasize formal analysis (e.g., Big-Oh, computability) or design methodologies (e.g., team 30

projects, software life cycle) early, thus integrating hours from the Programming Languages, 31

Algorithms and Complexity, and/or Software Engineering knowledge areas. Thus, the 42-hours 32

of material in this knowledge area should be augmented with core material from one or more of 33

these knowledge areas to form a complete and coherent first-year experience. 34

When considering the hours allocated to each knowledge unit, it should be noted that these hours 35

reflect the minimal amount of classroom coverage needed to introduce the material. Many 36

software development topics will reappear and be reinforced by later topics (e.g., applying 37

iteration constructs when processing lists). In addition, the mastery of concepts and skills from 38

this knowledge area requires a significant amount of software development experience outside of 39

class. 40

 41

SDF. Software Development Fundamentals (42 Core-Tier1 hours) 42

 Core-Tier1 hours Core-Tier2 hours Includes
Electives

SDF/Algorithms and Design 11 N

SDF/Fundamental Programming Concepts 10 N

SDF/Fundamental Data Structures 12 N

SDF/Development Methods 9 N

 43

44

www.manaraa.com

SDF/Algorithms and Design 45

[11 Core-Tier1 hours] 46

This unit builds the foundation for core concepts in the Algorithms & Complexity knowledge 47
area, most notably in the Basic Analysis and Algorithmic Strategies units. 48
Topics: 49

• The concept and properties of algorithms 50
o Informal comparison of algorithm efficiency (e.g., operation counts) 51

• The role of algorithms in the problem-solving process 52
• Problem-solving strategies 53

o Iterative and recursive mathematical functions 54
o Iterative and recursive traversal of data structure 55
o Divide-and-conquer strategies 56

• Implementation of algorithms 57
• Fundamental design concepts and principles 58

o Abstraction 59
o Program decomposition 60
o Encapsulation and information hiding 61
o Separation of behavior and implementation 62

 63
Learning Outcomes: 64

1. Discuss the importance of algorithms in the problem-solving process. [Knowledge] 65
2. Discuss how a problem may be solved by multiple algorithms, each with different properties. [Knowledge] 66
3. Create algorithms for solving simple problems. [Application] 67
4. Use pseudocode or a programming language to implement, test, and debug algorithms for solving simple 68

problems. [Application] 69
5. Implement, test, and debug simple recursive functions and procedures. [Application] 70
6. Determine when a recursive solution is appropriate for a problem. [Evaluation] 71
7. Implement a divide-and-conquer algorithm for solving a problem. [Application] 72
8. Apply the techniques of decomposition to break a program into smaller pieces. [Application] 73
9. Identify the data components and behaviors of multiple abstract data types. [Application] 74
10. Implement a coherent abstract data type, with loose coupling between components and behaviors. 75

[Application] 76
11. Identify the relative strengths and weaknesses among multiple designs or implementations for a problem. 77

[Evaluation] 78
 79

SDF/Fundamental Programming Concepts 80

[10 Core-Tier1 hours] 81

This unit builds the foundation for core concepts in the Programming Languages knowledge 82
area, most notably in the paradigm-specific units: Object-Oriented Programming, Functional 83
Programming, and Event-Driven & Reactive Programming. 84
Topics: 85

• Basic syntax and semantics of a higher-level language 86
• Variables and primitive data types (e.g., numbers, characters, Booleans) 87
• Expressions and assignments 88
• Simple I/O 89
• Conditional and iterative control structures 90

www.manaraa.com

• Functions and parameter passing 91
• The concept of recursion 92

 93
Learning Outcomes: 94

1. Analyze and explain the behavior of simple programs involving the fundamental programming constructs 95
covered by this unit. [Evaluation] 96

2. Identify and describe uses of primitive data types. [Knowledge] 97
3. Write programs that use each of the primitive data types. [Application] 98
4. Modify and expand short programs that use standard conditional and iterative control structures and 99

functions. [Application] 100
5. Design, implement, test, and debug a program that uses each of the following fundamental programming 101

constructs: basic computation, simple I/O, standard conditional and iterative structures, the definition of 102
functions, and parameter passing. [Application] 103

6. Choose appropriate conditional and iteration constructs for a given programming task. [Evaluation] 104
7. Describe the concept of recursion and give examples of its use. [Knowledge] 105
8. Identify the base case and the general case of a recursively-defined problem. [Evaluation] 106

 107

SDF/Fundamental Data Structures 108

[12 Core-Tier1 hours] 109

This unit builds the foundation for core concepts in the Algorithms & Complexity knowledge 110
area, most notably in the Fundamental Data Structures & Algorithms and Basic Computability & 111
Complexity units. 112
Topics: 113

• Arrays 114
• Records/structs (heterogeneous aggregates) 115
• Strings and string processing 116
• Stacks, queues, priority queues, sets & maps 117
• References and aliasing 118
• Simple linked structures 119
• Strategies for choosing the appropriate data structure 120

 121
Learning Outcomes: 122

1. Discuss the appropriate use of built-in data structures. [Knowledge] 123
2. Describe common applications for each data structure in the topic list. [Knowledge] 124
3. Compare alternative implementations of data structures with respect to performance. [Evaluation] 125
4. Write programs that use each of the following data structures: arrays, strings, linked lists, stacks, queues, 126

sets, and maps. [Application] 127
5. Compare and contrast the costs and benefits of dynamic and static data structure implementations. 128

[Evaluation] 129
6. Choose the appropriate data structure for modeling a given problem. [Evaluation] 130

 131

132

www.manaraa.com

SDF/Development Methods 133

[9 Core-Tier1 hours] 134

This unit builds the foundation for core concepts in the Software Engineering knowledge area, 135
most notably in the Software Design and Software Processes units. 136
Topics: 137

• Program correctness 138
• The concept of a specification 139
• Defensive programming (e.g. secure coding, exception handling) 140
• Code reviews 141
• Testing fundamentals and test-case generation 142
• Test-driven development 143
• The role and the use of contracts, including pre- and post-conditions 144
• Unit testing 145
• Modern programming environments 146
• Programming using library components and their APIs 147
• Debugging strategies 148
• Documentation and program style 149

 150
Learning Outcomes: 151

1. Explain why the creation of correct program components is important in the production of quality software. 152
[Knowledge] 153

2. Identify common coding errors that lead to insecure programs (e.g., buffer overflows, memory leaks, 154
malicious code) and apply strategies for avoiding such errors. [Application] 155

3. Conduct a personal code review (focused on common coding errors) on a program component using a 156
provided checklist. [Application] 157

4. Contribute to a small-team code review focused on component correctness. [Application] 158
5. Describe how a contract can be used to specify the behavior of a program component. [Knowledge] 159
6. Create a unit test plan for a medium-size code segment. [Application] 160
7. Apply a variety of strategies to the testing and debugging of simple programs. [Application] 161
8. Construct, execute and debug programs using a modern IDE (e.g., Visual Studio or Eclipse) and associated 162

tools such as unit testing tools and visual debuggers. [Application] 163
9. Construct and debug programs using the standard libraries available with a chosen programming language. 164

[Application] 165
10. Apply consistent documentation and program style standards that contribute to the readability and 166

maintainability of software. [Application] 167
 168

www.manaraa.com

